
Data and AI

Best Practices for Developing
High Performing Java

Applications for Db2 for z/OS

Maryela Weihrauch
IBM Distinguished Engineer WW Analytics on System z
weihrau@us.ibm.com

May 2020

mailto:weihrau@us.ibm.com

© 2020 IBM Corporation

2

Acknowledgements and Disclaimers:

© Copyright IBM Corporation 2012. All rights reserved.

– U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM Corp.

– Please update paragraph below for the particular product or family brand trademarks you mention such as

WebSphere, Db2, Maximo, Clearcase, Lotus, etc

IBM, the IBM logo, ibm.com, [IBM Brand, if trademarked], and [IBM Product, if trademarked] are trademarks or

registered trademarks of International Business Machines Corporation in the United States, other countries, or

both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a

trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at

the time this information was published. Such trademarks may also be registered or common law trademarks in

other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark information”

at www.ibm.com/legal/copytrade.shtml

f you have mentioned trademarks that are not from IBM, please update and add the following lines:

[Insert any special 3rd party trademark names/attributions here]

Other company, product, or service names may be trademarks or service marks of others.

Availability. References in this presentation to IBM products, programs, or services do not imply that they will be available in all
countries in which IBM operates.

The workshops, sessions and materials have been prepared by IBM or the session speakers and reflect their own views. They are
provided for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or advice
to any participant. While efforts were made to verify the completeness and accuracy of the information contained in this presentation, it is
provided AS-IS without warranty of any kind, express or implied. IBM shall not be responsible for any damages arising out of the use of,
or otherwise related to, this presentation or any other materials. Nothing contained in this presentation is intended to, nor shall have the
effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and condi tions of the
applicable license agreement governing the use of IBM software.

All customer examples described are presented as illustrations of how those customers have used IBM products and the resul ts they may
have achieved. Actual environmental costs and performance characteristics may vary by customer. Nothing contained in these
materials is intended to, nor shall have the effect of, stating or implying that any activities undertaken by you will result in any specific
sales, revenue growth or other results.

http://www.ibm.com/legal/copytrade.shtml

© 2020 IBM Corporation

3

Agenda

▪ Db2 JDBC driver architecture and API details

◼ Connection Management

◼ Db2 Dynamic Statement Cache

◼ Best practice for SQL Execution

© 2020 IBM Corporation

4

Db2 Drivers – Panoramic View

4

PhP Python/Jython Ruby/JRuby
Javascript

node.js
Scala

Zend

framew ork

adapters

SqlAlchemy/

Django Adapter

IBM Data Servers

Db2 CLI and ODBC driver Db2 JDBC driver

Rails

Adapter
Liftnode-odbc

node.js

driver

c

Python interpreter

java c

Ruby interpreter

java

JDBC API

SQLJ API

pureQuery

API

Hibernate

Spring

JPA

.NET

© 2020 IBM Corporation

5

Data Server Driver for JDBC/SQLJ - Architecture

Type 4 Driver
Type 2 driver for

Unix/Windows

Type 2 driver for

OS/390 or z/OS

DRDA

over

TCP/IP RRSAF

Local SQL

API

Common Code for all drivers:

JDBC APIs

SQLJ APIs

Java application using SQLJ or JDBC API

© 2020 IBM Corporation

6

6

Getting a Connection
▪ java.sql.DriverManager API

– The actual driver type determined during runtime from the connection URL format:

• Type 2 - “jdbc:db2:database”

• Type 4 - “jdbc:db2://host:port/database” (default port number 446)

▪ javax.sql.DataSource API

– Logical name mapped to DataSource object via JNDI naming service

– logical name -> driver info, DB name, IP, port, user, password, etc.

– App servers used to manage & configure data sources

– Makes application portable

Class.forName(“com.ibm.db2.jcc.DB2Driver”);
Connection con = DriverManager.getConnection(“jdbc:db2://localhost:50000/sample”,
“username”, “password”);

– Disadvantage – Reduces portability due to class name and URL.

Context ctx=new InitialContext();
DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");
Connection con=ds.getConnection();

© 2020 IBM Corporation

7

7

Driver and Connection Properties

▪Global driver properties can be provided through Java system properties or a

properties file.

▪JDBC API defines a set of properties to identify and describe a DataSource

implementation.

▪Properties may be specified in any of three ways

– JDBC 1 connection properties passed as a java.util.Properties object (consisting of

key/value pairs) as argument to DB2Driver.connect() or

java.sql.DriverManager.getConnection()

– As part of the database URL itself

• jdbc:db2://server[:port]/databaseName[:propertyKey=value;...]

• jdbc:db2://localhost:50000/TESTDB:user=foo;password=bar;

– Using setXXX methods

• most properties are defined in the abstract com.ibm.db2.jcc.DB2BaseDataSource

class

▪Examples of properties - ProgressiveStreaming, securityMechanism, loginTimeout,

keepdynamic, deferPrepares, enableSysplexWLB, currentExplainMode, cursorSensitivity,

maxTransportObjects, traceFile, traceLevel, currentSchema, currentSQLID, dumpPool

© 2020 IBM Corporation

8

8

Connection Optimization

▪All DB resources hang off Connection objects, must be managed carefully

▪Creating and terminating a connection is resource consuming, both in the
driver and Db2

▪Client obtaining a physical database connection requires multiple network
requests to

– Handshake on DRDA protocol

– Validate client user credentials

– Establish code page, packet sizes etc

• Get a connection object when needed

⚫ Reuse a connection object for multiple Statement objects when possible,
use connection pooling

⚫ Close connections promptly, don't leave connection cleanup up to
garbage collection

© 2020 IBM Corporation

9

Use ClientInfo fields

➢Can be used in WLM, RLF and profile definition and performance monitoring

➢WebSphere Application Server supports explicit and implicit setting of client

information

oExample how to call explicitly

...

WSConnection conn = (WSConnection) ds.getConnection();

props.setProperty(WSConnection.CLIENT_ID, "user123");

conn.setClientInformation(props);

oExample how to call implicitly by turning on WebSphere Trace Group

WAS.clientinfo=all=enabled or

WAS.clientinfopluslogging=all=enabled

© 2020 IBM Corporation

10

Sysplex Workload Balancing

▪ Data Server Driver Type 4 supports sysplex distribution and

transparent failover at transaction boundary

© 2020 IBM Corporation

11

Db2 Location Alias for Subgrouping

DB2P

LocationAlias1

LocationAlias2

DB1P
DB4PDB3P

LocationAlias1

LocationAlias3

LocationAlias1

LocationAlias2
LocationAlias1

LocationAlias3

Application1

LocationAlias1

Application2

LocationAlias2

Application3

LocationAlias3

To all members To DB1P, DB3P To DB2P, DB3P

–MODIFY DDF command with the ALIAS keyword to configure and

manage aliases dynamically without taking a Db2 or DDF outage.

© 2020 IBM Corporation

12

Db2 High Performance DBAT

▪ High Performance DBATs reduce CPU consumption by

– Supporting RELEASE(DEALLOCATE) to avoid repeated package
allocation/deallocation

– Avoids processing to go inactive and then back to active

▪ Enable High Performance DBAT

– BIND client packages into different collection coll2 with
RELEASE(DEALLOCATE)

– BIND other frequently executed packages with RELEASE(DEALLOCATE)

• In case of MDM REBIND trigger packages

– Set -MODIFY DDF PKGREL(BNDOPT) to enable

▪ In WAS datasource property definition point to new collection

– E.g. jdbcCollection=coll2

© 2020 IBM Corporation

13

Db2 Connection Profile
▪ Problem: For distributed workloads, low priority or poorly behaving client

applications may monopolize Db2 resources and prevent high-priority applications

from executing.

▪ Solution: Increased granularity of monitoring for system level activities

– Number of connections

– Number of threads

– Idle thread timeout

▪ Profiles specified in SYSIBM.DSN_PROFILE_TABLE

▪ Db2 supports filtering and threshold monitoring of system related activities via

keywords

– Number of threads - Db2 11 special register

– Number of connections - Db2 12 Db2-provided global var

– Idle thread timeout

▪ Scope filters

– ROLE (available through Trusted Context support)

– Product-specific identifier

© 2020 IBM Corporation

14

14

Prepared Statement Objects - Benefits

▪ PreparedStatement objects vs. Statement objects

– 2 DB calls needed for fetch (describe, data)

– PreparedStmt makes description calls at construction time, Statement makes them on
every execution.

– PreparedStatement enables Statement Pooling

– Use Statement when SQL is not executed often

▪ PreparedStatement object pool

– Client side optimization

– Pool of PreparedStatement and CallableStatement objects, not active in a Connection

– Reduced overhead of Java object creation and garbage collection

– Pool exists for the life of an open connection, effectiveness depends on connection
pooling.

– No impact to application

▪ No concern for SQLJ

© 2020 IBM Corporation

15

15

Statement or PreparedStatement

▪Statement example

▪PreparedStatement example

Statement stmt = con.createStatement();
stmt.executeUpdate("INSERT INTO EMPLOYEE VALUES('John', 123)");
stmt.executeUpdate("INSERT INTO EMPLOYEE VALUES('Mary', 425)");

PreparedStatement ps = con.prepareStatement(“INSERT INTO EMPLOYEE VALUES(?,
?)”);
ps.setString(1,”John”);
ps.setInt(2, 123);
ps.executeUpdate();
ps.setString(1,”Mary”);
ps.setInt(2, 425);
ps.executeUpdate();

© 2020 IBM Corporation

16

16

Db2 Dynamic Statement Cache

⚫ Dynamic statement prepared at run time

⚫ Dynamic statement cache

⚫ To improve performance of dynamic SQL

⚫ Enabled by DSNZPARM CACHEDYN = YES

⚫ Allows applications (multiple threads) to reuse and share prepared
statements

⚫ Prepared stmt is saved in an in-memory cache

⚫ Subsequent prepares of same stmt loads from cache if cache match
criteria met (sql, authid, special regs, bind options etc.)

⚫ Cache pool shared by different threads, plans and packages (“global
cache”)

⚫ Good cache hit rate produces significant performance benefits

⚫ A Full Prepare can consume 10-100X more CPU than a Short Prepare!

© 2020 IBM Corporation

17

17

Dynamic Statement Cache

▪SQL can be EXPLAINed using the ‘EXPLAIN STMTCACHE’
feature.

– Populates various explain tables with details on statements in the dynamic statement cache including
access path information

▪Use Dynamic SQL Stmt section of statistics to monitor the Global
Cache Hit Ratio % to determine if the cache size needs to be
increased.

© 2020 IBM Corporation

18

Literal Replacement for Global Dynamic Statement Cache

▪ Dynamic SQL with literals can be re-used in the cache

–Literals replaced with &

(similar to parameter markers but not the same)

▪ To enable set the property enableLiteralReplacement=’YES’ in the JCC

Driver

▪ Lookup Sequence

–Original SQL with literals is looked up in the cache

– If not found, literals are replaced and new SQL is looked up in the cache

• Additional match on literal usability

• Can only match with SQL stored with same attribute, not parameter marker

– If not found, new SQL is prepared and stored in the cache

▪ Db2 12 support as BIND option CONCENTRATESTMT on package

© 2020 IBM Corporation

19

19

Why SQLJ?

▪Static SQL performance for Java applications

▪Static SQL authorization model

▪Monitoring/Manageability
– Static SQL packages for accounting/monitoring
– Static SQL locks in access path, so that access path changes do not occur without a conscious

choice

▪Measurements with the IRWW workload comparing JDBC vs SQLJ with
the T2 driver

Throughput (ETR) Normalized
Throughput (ITR)

z/OS CPU Utilization CL.1 CPU time

JDBC T2 2636.83 3773.37 69.88 0.000672

SQLJ T2 2694.80 (+2.20%) 5174.35 (+37.13%) 52.08 (-25.47%) 0.000457 (-32.00%)

© 2020 IBM Corporation

20

20

Batching INSERT and SELECT

▪ INSERT – JDBC API

• SELECT - Db2 driver extension (executeDB2QueryBatch)

ps = conn.PrepareStatement(“INSERT INTO EMPLOYEE VALUES (?)”)
ps.setInt(1)
ps.addBatch()
ps.setInt(2)
ps.addBatch()
Int[] returncodes = ps.executeBatch()

PreparedStatement ps = conn.prepareStatement(“SELECT * from T1 where C1 = ?”)
ps.setInt(1,1)
ps.addBatch()
ps.setInt(1,2)
ps.addBatch()
((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).executeDB2QueryBatch();
While (ps.getMoreResults()) {

Rs = ps.getResultSet()
While (rs.next()){

}
rs.close

© 2020 IBM Corporation

21

Java Performance Problem Areas
➢ Java Application

▪ Autocommit(on) - default

▪ Mismatch of Java and Db2 data types

▪ Usage of String for numbers

▪ Retrieval of unused columns (select *)

▪ Transaction isolation REPEATABLE READ (default in WAS) or SERIALIZABLE

▪ Open cursor SELECT ... FOR UPDATE for locking semantics

▪ Consider using WITH RS USE AND KEEP UPDATE LOCKS

➢ JDBC

▪ JDBC resources not closed (cursor, statements, connections)

▪ No usage of Parameter Markers

▪ E.g. select c1, c2 FROM t1 WHERE c3=?

-> use literal replacement option

▪ Cursor are defined as hold by default

▪ Usage of Statement() instead of preparedStatement() objects

▪ No object caching in WAS

© 2020 IBM Corporation

22

Locking and Concurrency

▪ If deadlocks and timeouts, turn on Db2 Performance Trace class(6)

– Use LOCKSIZE ROW selectively for top reported tables

– Combine with MEMBER CLUSTER if data sharing to reduces page P-lock

and page latch contention on data pages

• Can be defined via deferred ALTER/REORG

▪ Review indexes

– Missing index causing table scan and deadlocks

– Drop unused indexes and Ris

▪ Zparm SKIPUNCI – skip uncommitted inserts for ISOLATION(CS|RS)

© 2020 IBM Corporation

23

Let’s Practice

▪ Application uses Type 2 connectivity.

▪ User wants to change to type 4 connectivity to

save CPU

▪ Db2 is not setup for distributed workloads

which would create a considerable test effort to

introduce in production

▪ Would you recommend to start the project to

change the application to use type 4

connectivity?

23

© 2020 IBM Corporation

24

Let’s Practice

▪Would you recommend to start the project to

change the application to use type 4

connectivity?

▪ Type 4 connectivity would provide ~ 55% zIIP

offload

▪ Type 2 connectivity in this report already get

almost 50% zIIP offload

✓Potential gCP saving is small, may not justify

project cost

24

© 2020 IBM Corporation

25

Let’s Practice ….

▪What performance optimization would you

recommend for this Java application?

– Consider SQL per commit

– Consider thread management per commit

25

© 2020 IBM Corporation

26

Let’s Practice ….

▪Mostly 1 single row select per Commit

- Application uses auto commit

-> Turn auto commit off

▪ Application could benefit from JDBC packages

bound with RELEASE(DEALLOCATE) avoiding

resignon

▪ Cost of avoidable thread management and commit

is multiple of cost executing simple SQL

26

© 2020 IBM Corporation

27

Configuration Options Accessing Data in Db2 for z/OS

© 2020 IBM Corporation

28

Summary
▪ Business critical Java applications with Db2 for z/OS as enterprise

database server have been implemented commonly and successfully

for many years now

▪Going through installation checklist is highly recommended prior to

each implementation to ensure success

–Communication among WAS Administrator, Db2 System

Programmer, and Application Architect

▪ No shortcuts in respect to setup for availability

–User sees application availability and not Db2 system availability

▪Monitor and react proactively and do not wait until user complains

–Workload behavior changes over time

© 2020 IBM Corporation

29

29

Useful links

▪http://www.bwdb2ug.org/PDF/Dynamic_Statement_Cache_in_a_N
utshell.pdf

▪http://www.ibm.com/systems/z/specialtyengines/

▪IBM Redbook - Db2 for z/OS and WebSphere Integration for
Enterprise Java Applications –
http://www.redbooks.ibm.com/abstracts/sg248074.html?Open

http://www.bwdb2ug.org/PDF/Dynamic_Statement_Cache_in_a_Nutshell.pdf
http://www.ibm.com/systems/z/specialtyengines/
http://www.redbooks.ibm.com/abstracts/sg248074.html?Open

© 2020 IBM Corporation

30

Session code:

Please fill out your session

evaluation before leaving!

Please fill out your session

evaluation before leaving!

Maryela Weihrauch

IBM

weihrau@us.ibm.com

E15

